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In this paperwe provide a construction of normal bimagic squares bymeans of amagic pair
of orthogonal general bimagic squares. It is shown that a normal bimagic square of order
mn exists for all positive integers m, n such that m, n ∉ {2, 3, 6} and m ≡ n (mod 2), and
a normal bimagic square of order 4m exists if and only ifm ≥ 2.
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1. Introduction

An n × n matrix A consisting of nonnegative integers is a general magic square of order n if the sum of elements in each
row, column, and main diagonal is the same. The sum is the magic number. A general magic square A of order n is a magic
square, denoted by MS(n), if the entries of A are distinct. A magic square A of order n is normal if the entries of A are n2

consecutive integers. Usually, the entry in position (i, j) of a matrix A is denoted by ai,j.
Magic squares have been studied for 4000 years. The Loh-Shu magic square is the oldest known magic square; its

invention is attributed to Fuh-Hic, the mythical founder of Chinese civilization [4]. A lot of work has been done on
construction of magic squares; for more details, the interested reader may refer to [1,3–6,8,11], and the references therein.

Magic rectangles are a natural generalization of magic squares. An m × n general magic rectangle is an m × n array
consisting of natural numbers such that each row sum is the same and each column sum is the same (the two constants
differ ifm ≠ n). Anm×n general magic rectangle is amagic rectangle if itsmn entries are distinct. Anm×nmagic rectangle
A is normal if the entries of A aremn consecutive integers. Harmuth [9,10] proved the following.

Lemma 1.1. For m, n > 1, there exists a normal m × n magic rectangle if and only if m ≡ n(mod 2) and (m, n) ≠ (2, 2).

Given a matrix A and a positive integer d. Let A∗d denote the matrix obtained by raising each element of A to the dth
power. The matrix A is a d-multimagic square, denoted by MS(n, d), if A∗e is an MS(n) for 1 ≤ e ≤ d. Clearly, if A is normal,
then A∗e cannot be normal for all positive integers e ≥ 2. When d = 2, an MS(n, 2) is a bimagic square. An m × n (general)
d-multimagic rectangle can be defined in a similar way.

It was shown by Lucas [14] that there is no MS(3, 2) and no normal MS(4, 2). The first normal bimagic square was
published by Pfeffermann in 1891: it has order 8 [15,5]. The following can be found in [5].

Lemma 1.2. There exists a normalMS(n, 2) for 8 ≤ n ≤ 64 and there is no normalMS(n, 2) for n = 3, 4.

Recently, Derksen et al. [8] have provided a constructive procedure to make a large class of d-multimagic squares for
each positive integer d ≥ 2. For example, they proved the following.
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Lemma 1.3. There exists a normalMS(n2, 2) for all odd n ≥ 3.

A magic square is pandiagonal if the sum of elements in each broken diagonal is the magic number. A family of normal
pandiagonal bimagic squares was given in [7,12]. In this paper, we shall provide a new construction of bimagic squares by
means of a magic pair of orthogonal general bimagic squares. As its application, the following results are obtained.

Theorem 1.4. There exists a normalMS(mn, 2) for all positive integers m, n such that m, n ∉ {2, 3, 6} and m ≡ n (mod 2).

Theorem 1.5. There exists a normalMS(4m, 2) if and only if m ≥ 2.

2. Construction of a normal MS(n, 2)

An n × n matrix A with entries in a set T is a balanced square if each element of T appears n times in A. Two balanced
squares A and B of order n over T1 and T2 are orthogonal if {(ai,j, bi,j)|0 ≤ i, j ≤ n − 1} = T1 × T2. Given squares A and B,
let A ∗ B denote the ‘‘pointwise product’’, with ai,jbi,j in position (i, j). Squares A and B form amagic pair if A ∗ B is a general
magic square.

Let In be the set of nonnegative integers less than n, i.e., In = {0, 1, . . . , n − 1}.

Construction 2.1. Given n × n matrices A and B over In, let C = nA + B. Then the matrix C satisfies the following.
(i) C is a normalMS(n) if A and B are a pair of orthogonal general MS(n).
(ii) C is a normalMS(n, 2) if A and B are a magic pair of orthogonal general MS(n, 2).

Proof. (i) Since A and B are orthogonal, we have

{(ai,j, bi,j)|0 ≤ i, j ≤ n − 1} = In × In,

which indicates that

{ci,j|0 ≤ i, j ≤ n − 1} = {nai,j + bi,j|0 ≤ i, j ≤ n − 1} = In2 .

By hypothesis, A and B are both general magic squares. Suppose that SA and SB are the magic sum of A and B, respectively.
We have

n−1
i=0

ci,j =

n−1
i=0

(nai,j + bi,j) = nSA + SB, 0 ≤ j ≤ n − 1,

n−1
j=0

ci,j =

n−1
j=0

(nai,j + bi,j) = nSA + SB, 0 ≤ i ≤ n − 1,

n−1
i=0

ci,i =

n−1
i=0

(nai,i + bi,i) = nSA + SB,

n−1
i=0

ci,n−1−i =

n−1
i=0

(nai,n−1−i + bi,n−1−i) = nSA + SB.

Thus C is a normal MS(n).
(ii) Since A and B are a magic pair of orthogonal general MS(n, 2) over In, by (i) C is a normal MS(n). Let D = A ∗ B, and

let SA∗2 , SB∗2 and SD be the magic sums of A∗2, B∗2, and D, respectively. For i ∈ In, we have
n−1
j=0

c2i,j =

n−1
j=0

(nai,j + bi,j)2 =

n−1
j=0

(n2a2i,j + 2nai,jbi,j + b2i,j) = n2SA∗2 + 2nSD + SB∗2 .

For j ∈ In, we have
n−1
i=0

c2i,j =

n−1
i=0

(nai,j + bi,j)2 =

n−1
i=0

(n2a2i,j + 2nai,jbi,j + b2i,j) = n2SA∗2 + 2nSD + SB∗2 .

n−1
i=0

c2i,i =

n−1
i=0

(nai,i + bi,i)2 =

n−1
i=0

(n2a2i,i + 2nai,ibi,i + b2i,i) = n2SA∗2 + 2nSD + SB∗2 .

n−1
i=0

c2i,n−1−i =

n−1
i=0

(nai,n−1−i + bi,n−1−i)
2

=

n−1
i=0

(n2a2i,n−1−i + 2nai,n−1−ibi,n−1−i + b2i,n−1−i)

= n2SA∗2 + 2nSD + SB∗2 .

Thus, C is a normal MS(n, 2). The proof is complete. �



K. Chen, W. Li / Discrete Mathematics 312 (2012) 3077–3086 3079

3. Proof of Theorem 1.4

By Construction 2.1, to obtain a normal MS(mn), it suffices to find a magic pair of orthogonal general MS(mn, 2) over Imn.
In this section, we shall construct a magic pair of orthogonal general MS(mn, 2) over Imn by means of orthogonal diagonal
latin squares and rectangles.

A latin square of order n, denoted by LS(n), is an n × n array over an n-set S such that each element in S occurs exactly
once in each row and exactly once in each column. A transversal in a latin square of order n is a set of n cells, one from each
row and column, containing each of n elements exactly once. A latin square of order n is diagonal if its two main diagonals
are both transversals. The following can be found in [2].

Lemma 3.1. There exists a pair of orthogonal diagonal LS(n) if and only if n ≠ 2, 3, 6.

It is easy to see that a latin square must be balanced and that any diagonal latin square is also a general bimagic square.
Therefore, amagic pair of orthogonal diagonal LS(n) is amagic pair of orthogonal generalMS(n, 2). Thus, by Construction 2.1
we have the following corollary, which can also be found in [16].

Corollary 3.2. If there exists a magic pair of orthogonal diagonal LS(n) over In, then there exists a normalMS(n, 2).

By Corollary 3.2, to construct a normal MS(n, 2), it suffices to find a magic pair of orthogonal diagonal LS(n). Modifying
the proof of Lemma 2.1 in [13], we have the following.

Lemma 3.3. There exists a magic pair of orthogonal diagonal LS(mn) for all positive integers m, n such that m, n ∉ {2, 3, 6} and
m ≡ n (mod 2).

Proof. By Lemma 3.1, we can suppose that A and B are orthogonal diagonal LS(m) over Im, C and D are orthogonal diagonal
LS(n) over In. Clearly, the sum of the elements in each row, column, and main diagonal of A is m(m − 1)/2, and the sum of
the elements in each row, column and main diagonal of C is n(n − 1)/2.

By Lemma 1.1, we can suppose that H is anm× nmagic rectangle over Imn. Let Sr and Sc be the row sum and the column
sum of H , respectively. It is easy to calculate that

Sr =
1
m


h∈Imn

h =
n(mn − 1)

2
, Sc =

1
n


h∈Imn

h =
m(mn − 1)

2
.

Let

E = (ei,j), F = (fi,j),

where

ei,j = au,v + mcs,t , fi,j = hbu,v ,ds,t ,

i = u + sm, j = v + tm, 0 ≤ u, v ≤ m − 1, 0 ≤ s, t ≤ n − 1.

By the proof of Lemma 2.1 in [13], E and F are a pair of orthogonal diagonal LS(mn) over Imn. We now prove that E and F
are also a magic pair.

For each i ∈ Imn, we can write i = u + sm, 0 ≤ u ≤ m − 1, 0 ≤ s ≤ n − 1.
0≤j≤mn−1

ei,jfi,j =


0≤v≤m−1


0≤t≤n−1

(au,v + mcs,t)hbu,v ,ds,t

=


0≤v≤m−1

au,v


0≤t≤n−1

hbu,v ,ds,t + m


0≤t≤n−1

cs,t


0≤v≤m−1

hbu,v ,ds,t

=


0≤v≤m−1

au,vSr + m


0≤t≤n−1

cs,tSc

=
m(m − 1)

2
n(mn − 1)

2
+ m

n(n − 1)
2

m(mn − 1)
2

=
mn(mn − 1)2

4
,

noting that {ds,t |0 ≤ t ≤ n − 1} = In for given s ∈ In and {bu,v|0 ≤ v ≤ m − 1} = Im for given u ∈ Im.
Similarly, one can prove that for each j ∈ Imn,

0≤i≤mn−1

ei,jfi,j =
mn(mn − 1)2

4
,
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and 
0≤i≤mn−1

ei,ifi,i =
mn(mn − 1)2

4
,


0≤i≤mn−1

ei,mn−1−ifi,mn−1−i =
mn(mn − 1)2

4
.

Thus, E and F are a magic pair of orthogonal diagonal LS(mn). �

The proof of Theorem 1.4 now follows by combining Lemma 3.3 and Corollary 3.2.

4. Proof of Theorem 1.5

Let p and q be two positive integers such that p, q ∉ {1, 3}. By Theorem 1.4, there exists a normal MS(4pq, 2), which
gives a partial result on the existence of normal bimagic squares of order 4m.

In this section, we shall show that a normal MS(4m, 2) exists for all positive integers m ∉ {1, 3}. By Construction 2.1,
to obtain a MS(4m, 2), we need only to construct a magic pair of orthogonal general MS(4m, 2). To do this, we will take
advantage of idempotent self-orthogonal latin squares and magic rectangles.

A latin square X of order n over In is idempotent if xi,i = i for all i ∈ In. A latin square X is self-orthogonal if it is orthogonal
to its transpose XT . The following can be found in [2].

Lemma 4.1. There exists an idempotent self-orthogonal LS(n) for all positive integers n ≠ 2, 3, 6.

Let m be a positive integer such that m ∉ {1, 3}, and let n = 2m. By Lemmas 4.1 and 1.1, we may assume that X is an
idempotent self-orthogonal latin square of order n over In and that H is a 2 × n magic rectangle over I2n, with rows and
columns labeled with I2 and In. Let Sr and Sc be the row sum and the column sum of H , respectively. The following is clear.

n−1
j=0

hi,j = n(2n − 1)/2 = Sr , i = 0, 1 (1)

h0,j + h1,j = 2n − 1 = Sc, j = 0, 1, . . . , n − 1 (2)

from which we compute

n−1
j=0

h2
0,j −

n−1
j=0

h2
1,j =

n−1
j=0

(h0,j + h1,j)(h0,j − h1,j) =

n−1
j=0

Sc(h0,j − h1,j)

= Sc


n−1
j=0

h0,j −

n−1
j=0

h1,j


= Sc(Sr − Sr) = 0.

That is

n−1
j=0

h2
0,j =

n−1
j=0

h2
1,j = n(2n − 1)(4n − 1)/6 = S(2)

r . (3)

It follows that

n−1
j=0

h0,jh1,j =

n−1
j=0

h0,j(Sc − h0,j) = Sc
n−1
j=0

h0,j −

n−1
j=0

h2
0,j = ScSr − S(2)

r . (4)

Letting Tk = {hk,j|0 ≤ j ≤ n − 1} for k ∈ {0, 1}, we define n × nmatrices Ak and Bk as follows.

Ak = (a(k)
i,j ), a(k)

i,j = hk,xi,j , 0 ≤ i, j ≤ n − 1.

Bk = (b(k)
i,j ), b(k)

i,j =


h1−k,xj,i+1, if xj,i ≡ 0 (mod 2),
h1−k,xj,i−1, if xj,i ≡ 1 (mod 2).

Clearly, Ak and Bk are two latin squares over Tk and T1−k, respectively. It is not difficult to show that Ak and Bk′ are
orthogonal for k, k′

∈ {0, 1}. In fact, if there exist i1, j1, i2, j2 ∈ In such that (a(k)
i1,j1

, b(k′)
i1,j1

) = (a(k)
i2,j2

, b(k′)
i2,j2

), then we have

a(k)
i1,j1

= a(k)
i2,j2

(5)
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and

b(k′)
i1,j1

= b(k′)
i2,j2

. (6)

From (5), we have hk,xi1,j1
= hk,xi2,j2

, and hence xi1,j1 = xi2,j2 . From (6), we can show that xj1,i1 −xj2,i2 ≡ 0 (mod 2). Otherwise,
we have h1−k′,xj1,i1±1 = h1−k′,xj2,i2∓1. It follows that xj1,i1 ±1 = xj2,i2 ∓1, hence, xj1,i1 −xj2,i2 ≡ 0 (mod 2), a contradiction. So
we have h1−k′,xj1,i1±1 = h1−k′,xj2,i2±1, which implies xj1,i1 = xj2,i2 . Note that X is an idempotent self-orthogonal latin square,
we have i1 = i2, j1 = j2, which indicates that Ak and Bk′ are orthogonal.

Construct two 2n × 2nmatrices A and B as follows,

A =


A0 A0
A1 A1


, B =


B0 B1
B0 B1


. (7)

Then we have the following.

Lemma 4.2. If A and B are defined as in (7), then we have the following.

(i) A and B are a pair of orthogonal 2n × 2n general bimagic rectangles over I2n.
(ii) D = (ai,jbi,j) is a 2n × 2n general rectangle over I2n.

Proof. (i) Clearly, T0 ∪ T1 = I2n. Since Ak and Bk′ are orthogonal for all k, k′
∈ {0, 1} from the above discussion, we have

{(ai,j, bi,j)|0 ≤ i, j ≤ 2n − 1} =


k,k′∈{0,1}

{(a(k)
i,j , b

(k′)
i,j )|0 ≤ i, j ≤ n − 1}

=


k,k′∈{0,1}

(Tk × T1−k′) = I2n × I2n.

So, A and B are orthogonal over I2n.
Let S(1)

r = Sr = n(2n−1)/2, S(2)
r = n(2n−1)(4n−1)/6. For each i ∈ I2n, we canwrite i = kn+s, where k ∈ {0, 1}, s ∈ In.

By (1) and (3), for e ∈ {1, 2}, we have

2n−1
j=0

aei,j = 2
n−1
j=0

(a(k)
s,j )

e
= 2

n−1
j=0

he
k,xs,j = 2S(e)

r .

For each j ∈ I2n, we can write j = k′n + t , where k′
∈ {0, 1}, t ∈ In. We have

2n−1
i=0

aei,j =

n−1
i=0

(a(0)
i,t )e +

n−1
i=0

(a(1)
i,t )e =

n−1
i=0

he
0,xi,t +

n−1
i=0

he
1,xi,t = 2S(e)

r .

Thus, A is a 2n × 2n general bimagic rectangle over I2n. Similarly, one can prove that B is also a 2n × 2n bimagic rectangle
over I2n, the sum of elements in each row or column of B∗e is also 2S(e)

r for e ∈ {1, 2}.
(ii) For each i ∈ I2n, we can write i = kn + s, where k ∈ {0, 1}, s ∈ In. We have

2n−1
j=0

ai,jbi,j =

n−1
j=0

a(k)
s,j b

(0)
s,j +

n−1
j=0

a(k)
s,j b

(1)
s,j

=

n−1
j=0

a(k)
s,j (b

(0)
s,j + b(1)

s,j ) =

n−1
j=0

a(k)
s,j Sc = SrSc .

For each j ∈ I2n, we can also write j = k′n + t , where k′
∈ {0, 1}, t ∈ In. We have

2n−1
i=0

ai,jbi,j =

n−1
i=0

a(0)
i,t b

(k′)
i,t +

n−1
i=0

a(1)
i,t b

(k′)
i,t

=

n−1
i=0

(a(0)
i,t + a(1)

i,t )b(k′)
i,t =

n−1
i=0

Scb
(k′)
i,t = SrSc .

Thus, D is a 2n × 2n general rectangle over I2n. The proof is complete. �

One may hope that A and B are a magic pair of orthogonal general MS(2n, 2) over I2n. Unfortunately, the constructions
given above cannot guarantee this property. To see this, we give an example.
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Example 4.3. Letm = 2, n = 4,

H =


0 6 5 3
7 1 2 4


, X =

0 3 1 2
2 1 3 0
3 0 2 1
1 2 0 3

 .

It is easy to see that H is a 2 × 4 magic rectangle over I8, Sr = 14, Sc = 7, S(2)
r = 70 and X is an idempotent self-orthogonal

LS(4) over I4. By the above constructions, we have

A0 =

0 3 6 5
5 6 3 0
3 0 5 6
6 5 0 3

 , A1 =

7 4 1 2
2 1 4 7
4 7 2 1
1 2 7 4

 ,

B0 =

1 4 2 7
2 7 1 4
7 2 4 1
4 1 7 2

 , B1 =

6 3 5 0
5 0 6 3
0 5 3 6
3 6 0 5

 ,

A =


A0 A0
A1 A1


=



0 3 6 5 0 3 6 5
5 6 3 0 5 6 3 0
3 0 5 6 3 0 5 6
6 5 0 3 6 5 0 3
7 4 1 2 7 4 1 2
2 1 4 7 2 1 4 7
4 7 2 1 4 7 2 1
1 2 7 4 1 2 7 4


,

B =


B0 B1
B0 B1


=



1 4 2 7 6 3 5 0
2 7 1 4 5 0 6 3
7 2 4 1 0 5 3 6
4 1 7 2 3 6 0 5
1 4 2 7 6 3 5 0
2 7 1 4 5 0 6 3
7 2 4 1 0 5 3 6
4 1 7 2 3 6 0 5


.

By Lemma 4.2, A and B are a pair of orthogonal 8 × 8 general bimagic rectangles over I8, but not a magic pair. In fact, for
D = (di,j) = (ai,jbi,j), we have

7
i=0

di,i =

7
i=0

ai,ibi,i = 136,
7

i=0

di,7−i =

7
i=0

ai,7−ibi,7−i = 60.

However, we can obtain a magic pair of orthogonal general MS(2n, 2) over I2n from A and B by doing some column and
row permutations to A and B together according to the following three steps.

Suppose that A and B are defined as in (7). Let π1 = (n, 2n − 1)(n + 1, 2n − 2) · · · (n +
n−2
2 , n +

n
2 ) and π2 =

(1, 2n − 2)(3, 2n − 4) · · · (n − 1, n) be two permutations on I2n.
Step 1. Do the column permutation π1 to A and B to get E and F , respectively,

E =


E1 E2
E3 E4


, F =


F1 F2
F3 F4


,

where Ek = (e(k)
i,j ), Fk = (f (k)

i,j ), k = 1, 2, 3, 4, and for i, j ∈ In,

e(1)
i,j = a(0)

i,j , e(2)
i,j = a(0)

i,n−1−j, e(3)
i,j = a(1)

i,j , e(4)
i,j = a(1)

i,n−1−j,

and

f (1)
i,j = b(0)

i,j , f (2)
i,j = b(1)

i,n−1−j, f (3)
i,j = b(0)

i,j , f (4)
i,j = b(1)

i,n−1−j.

Step 2. Do the row permutation π1 to E and F to getM and N , respectively,

M =


M1 M2
M3 M4


, N =


N1 N2
N3 N4


,



K. Chen, W. Li / Discrete Mathematics 312 (2012) 3077–3086 3083

where Mk = (m(k)
i,j ),Nk = (n(k)

i,j ), k = 1, 2, 3, 4. For i, j ∈ In,

m(1)
i,j = e(1)

i,j = a(0)
i,j , m(2)

i,j = e(2)
i,j = a(0)

i,n−1−j,

m(3)
i,j = e(3)

n−1−i,j = a(1)
n−1−i,j, m(4)

i,j = e(4)
n−1−i,j = a(1)

n−1−i,n−1−j,

and

n(1)
i,j = f (1)

i,j = b(0)
i,j , n(2)

i,j = e(2)
i,j = b(1)

i,n−1−j,

n(3)
i,j = f (3)

n−1−i,j = b(0)
n−1−i,j, n(4)

i,j = f (4)
n−1−i,j = b(1)

n−1−i,n−1−j.

Step 3. Do the column permutation π2 to M and N to get U and V , respectively,

U =


U1 U2
U3 U4


, V =


V1 V2
V3 V4


,

where Uk = (u(k)
i,j ), Vk = (v

(k)
i,j ), k = 1, 2, 3, 4. For i, j ∈ In,

u(1)
i,j =


m(1)

i,j , j ≡ 0 (mod 2)
m(2)

i,n−1−j, j ≡ 1 (mod 2)
= a(0)

i,j ,

u(2)
i,j =


m(1)

i,n−1−j, j ≡ 0 (mod 2)
m(2)

i,j , j ≡ 1 (mod 2)
= a(0)

i,n−1−j,

u(3)
i,j =


m(3)

i,j , j ≡ 0 (mod 2)
m(4)

i,n−1−j, j ≡ 1 (mod 2)
= a(1)

n−1−i,j,

u(4)
i,j =


m(3)

i,n−1−j, j ≡ 0 (mod 2)
m(4)

i,j , j ≡ 1 (mod 2)
= a(1)

n−1−i,n−1−j,

and

v
(1)
i,j =


n(1)
i,j , j ≡ 0 (mod 2)

n(2)
i,n−1−j, j ≡ 1 (mod 2)

=


b(0)
i,j , j ≡ 0 (mod 2),

b(1)
i,j , j ≡ 1 (mod 2),

v
(2)
i,j =


n(1)
i,n−1−j, j ≡ 0 (mod 2)

n(2)
i,j , j ≡ 1 (mod 2)

=


b(0)
i,n−1−j, j ≡ 0 (mod 2),

b(1)
i,n−1−j, j ≡ 1 (mod 2),

v
(3)
i,j =


n(3)
i,j , j ≡ 0 (mod 2)

n(4)
i,n−1−j, j ≡ 1 (mod 2)

=


b(0)
n−1−i,j, j ≡ 0 (mod 2),

b(1)
n−1−i,j, j ≡ 1 (mod 2),

v
(4)
i,j =


n(3)
i,n−1−j, j ≡ 0 (mod 2)

n(4)
i,j , j ≡ 1 (mod 2)

=


b(0)
n−1−i,n−1−j, j ≡ 0 (mod 2),

b(1)
n−1−i,n−1−j, j ≡ 1 (mod 2).

We have the following.

Lemma 4.4. If A and B are defined as in (7), then U and V listed above are a magic pair of orthogonal generalMS(2n, 2) over I2n.

Proof. Since U and V are obtained from A and B under the same row or column permutations, by Lemma 4.2, U and V are
also a pair of orthogonal 2n× 2n general bimagic rectangles over I2n, the sum of elements in each row or column of U∗e and
V ∗e is 2S(e)

r , e = 1, 2. By the same reason, U ∗ V is a 2n × 2n general magic rectangle, the sum of elements in each row or
column of U ∗ V is SrSc .

For e = 1, 2, we have
2n−1
i=0

ue
i,i =

n−1
i=0

(u(1)
i,i )e +

n−1
i=0

(u(4)
i,i )e =

n−1
i=0

(a(0)
i,i )e +

n−1
i=0

(a(1)
n−1−i,n−1−i)

e

= S(e)
r + S(e)

r = 2S(e)
r ,

2n−1
i=0

(ui,n−1−i)
e

=

n−1
i=0

(u(2)
i,n−1−i)

e
+

n−1
i=0

(u(3)
i,n−1−i)

e
=

n−1
i=0

(a(0)
i,i )e +

n−1
i=0

(a(1)
n−1−i,n−1−i)

e

= S(e)
r + S(e)

r = 2S(e)
r .

Thus, U is a general bimagic square. Similarly, one can show that V is also a general bimagic square.
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On the other hand,

2n−1
i=0

ui,ivi,i =

n−1
i=0

u(1)
i,i v

(1)
i,i +

n−1
i=0

u(4)
i,i v

(4)
i,i

=


0≤i≤n−1

i≡0 (mod 2)

a(0)
i,i b

(0)
i,i +


0≤i≤n−1

i≡1 (mod 2)

a(0)
i,i b

(1)
i,i +


0≤i≤n−1

i≡0 (mod 2)

a(1)
n−1−i,n−1−ib

(0)
n−1−i,n−1−i

+


0≤i≤n−1

i≡1 (mod 2)

a(1)
n−1−i,n−1−ib

(1)
n−1−i,n−1−i

=


0≤i≤n−1

i≡0 (mod 2)

a(0)
i,i b

(0)
i,i +


0≤i≤n−1

i≡1 (mod 2)

a(0)
i,i b

(1)
i,i +


0≤i≤n−1

i≡1 (mod 2)

a(1)
i,i b

(0)
i,i +


0≤i≤n−1

i≡0 (mod 2)

a(1)
i,i b

(1)
i,i . (∗)

Noting that for each i ∈ In, xi,i = i. By the definition of Ak and Bk, we have

a(k)
i,i = hk,i, b(k)

i,i =


h1−k,i+1, if i ≡ 0 (mod 2),
h1−k,i−1, if i ≡ 1 (mod 2), k = 0, 1.

(∗) becomes

2n−1
i=0

ui,ivi,i =


0≤i≤n−1

i≡0 (mod 2)

h0,ih1,i+1 +


0≤i≤n−1

i≡1 (mod 2)

h0,ih0,i−1 +


0≤i≤n−1

i≡1 (mod 2)

h1,ih1,i−1 +


0≤i≤n−1

i≡0 (mod 2)

h1,ih0,i+1

=


0≤i≤n−1

i≡0 (mod 2)

h0,ih1,i+1 +


0≤i≤n−1

i≡0 (mod 2)

h0,i+1h0,i +


0≤i≤n−1
i≡0 (mod 2)

h1,i+1h1,i +


0≤i≤n−1
i≡0 (mod 2)

h1,ih0,i+1

=


0≤i≤n−1

i≡0 (mod 2)

(h0,i + h1,i)(h1,i+1 + h0,i+1)

=


0≤i≤n−1

i≡0 (mod 2)

S2c =
n
2
(2n − 1)2 = SrSc .

In a similar way, one can readily check that

2n−1
i=0

ui,2n−1−ivi,2n−1−i = SrSc .

Thus, U and V are a magic pair of orthogonal general MS(2n, 2) over I2n. The proof is complete. �

We are now in a position to give the proof of Theorem 1.5. Let X = 2nU + V , then X is a normal MS(2n, 2) by
Construction 2.1 and Lemma 4.4, where n = 2m,m ∉ {1, 3}. Combining with Lemma 1.2, the proof of Theorem 1.5 is
obtained. �

To illustrate the above constructions, we provide an example below.

Example 4.5. Letm = 2, n = 4. Let A and B be the same as in Example 4.3, i.e.,

A =



0 3 6 5 0 3 6 5
5 6 3 0 5 6 3 0
3 0 5 6 3 0 5 6
6 5 0 3 6 5 0 3
7 4 1 2 7 4 1 2
2 1 4 7 2 1 4 7
4 7 2 1 4 7 2 1
1 2 7 4 1 2 7 4


, B =



1 4 2 7 6 3 5 0
2 7 1 4 5 0 6 3
7 2 4 1 0 5 3 6
4 1 7 2 3 6 0 5
1 4 2 7 6 3 5 0
2 7 1 4 5 0 6 3
7 2 4 1 0 5 3 6
4 1 7 2 3 6 0 5


.

Let π1 = (4, 7)(5, 6) and π2 = (1, 6)(3, 4) be two permutations on I8.
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Step 1. Do the column permutation π1 to A and B to get E and F , respectively,

E =



0 3 6 5 5 6 3 0
5 6 3 0 0 3 6 5
3 0 5 6 6 5 0 3
6 5 0 3 3 0 5 6
7 4 1 2 2 1 4 7
2 1 4 7 7 4 1 2
4 7 2 1 1 2 7 4
1 2 7 4 4 7 2 1


, F =



1 4 2 7 0 5 3 6
2 7 1 4 3 6 0 5
7 2 4 1 6 3 5 0
4 1 7 2 5 0 6 3
1 4 2 7 0 5 3 6
2 7 1 4 3 6 0 5
7 2 4 1 6 3 5 0
4 1 7 2 5 0 6 3


.

Step 2. Do the row permutation π1 to E and F to getM and N , respectively,

M =



0 3 6 5 5 6 3 0
5 6 3 0 0 3 6 5
3 0 5 6 6 5 0 3
6 5 0 3 3 0 5 6
1 2 7 4 4 7 2 1
4 7 2 1 1 2 7 4
2 1 4 7 7 4 1 2
7 4 1 2 2 1 4 7


, N =



1 4 2 7 0 5 3 6
2 7 1 4 3 6 0 5
7 2 4 1 6 3 5 0
4 1 7 2 5 0 6 3
4 1 7 2 5 0 6 3
7 2 4 1 6 3 5 0
2 7 1 4 3 6 0 5
1 4 2 7 0 5 3 6


.

Step 3. Do the column permutation π2 to M and N to get U and V , respectively,

U =



0 3 6 5 5 6 3 0
5 6 3 0 0 3 6 5
3 0 5 6 6 5 0 3
6 5 0 3 3 0 5 6
1 2 7 4 4 7 2 1
4 7 2 1 1 2 7 4
2 1 4 7 7 4 1 2
7 4 1 2 2 1 4 7


, V =



1 3 2 0 7 5 4 6
2 0 1 3 4 6 7 5
7 5 4 6 1 3 2 0
4 6 7 5 2 0 1 3
4 6 7 5 2 0 1 3
7 5 4 6 1 3 2 0
2 0 1 3 4 6 7 5
1 3 2 0 7 5 4 6


.

Then by Lemma 4.4, U and V are a magic pair of orthogonal general MS(8, 2) over I8. It is not difficult to calculate
7

i=0

ui,ivi,i = 0 · 1 + 6 · 0 + 5 · 4 + 3 · 5 + 4 · 2 + 2 · 3 + 1 · 7 + 7 · 6 = 98,

7
i=0

ui,7−ivi,7−i = 0 · 6 + 6 · 7 + 5 · 3 + 3 · 2 + 4 · 5 + 2 · 4 + 1 · 0 + 7 · 1 = 98.

Remark. It is readily checked that for integer m ∉ {1, 3}, the normal MS(4m, 2)X obtained from the proof of Theorem 1.5
having the following properties:

(I)
2m−1

i=0 xi,j =
4m−1

i=2m xi,j = (4m + 1)Sr , 0 ≤ j ≤ 4m − 1,
(II)


0≤j≤4m−1
j≡0 (mod 2)

xi,j =


0≤j≤4m−1
j≡1 (mod 2)

xi,j = (4m + 1)Sr ,

(III) xi,i + x4m−1−i,4m−1−i = xi,4m−1−i + x4m−1−i,i = (4m + 1)Sc ,

where Sr = m(4m − 1) and Sc = 4m − 1.

We should point out that a normal MS(4m, 2) having the properties (I)–(III) will be useful in constructing sparse bimagic
squares, which will be described in our next paper.
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